jawab
Tuliskan
persamaan elips dalam bentuk x^2/a^2 + y^2/b^2 = 1
yang memenuhi persyaratan Fokus di (-8, 0) dan (8, 0),
puncak di (-17 ,0) dan (17, 0)
jawab:
Tentukan persamaan elips pada kondisi berikut, kemudian lukislah grafiknya:
b. Fokus (-1, -1) dan (-1, 7) dan panjang separuh sumbu mayor aadalah 8 satuan
jawab:
Tuliskan pusat, puncak, dan persamaan
direktris dari persamaan elips berikut:
a. (x-5)^2 / 5^2 + (y+1)^2^ / 3^2
jawab:
Tentukan lebar focal chord, nilai eksentrisitas, dan panjang sumbu
mayor dari persamaan elips 3x^2 + 4y^2 - 6x + 16y + 7 = 0
jawab:
Tentukan persamaan elips dalam kondisi berikut, kemudian lukislah grafiknya.
d. Pusat di ( -1, 4 ), salah satu Fokusnya F ( -1, 1 ) dan melalui titk ( 0, 8 )
jawab:
Tuliskan
persamaan elips dalam bentuk x^2/a^2 + y^2/b^2 = 1
yang memenuhi persyaratan Fokus di (-6, 0) dan (6, 0) sumbu minor 16
jawab:
Tentukan panjang sumbu mayor dan panjang sumbu minor, titk fokus dan eksentrisitas dari setiap persamaan elips berikut, kemudian lukislah grafiknya
e. 4x2 + 25y2 =100
jawab:
Tuliskan Pusat , puncak dan persamaan direktris dari setiap persamaan elips berikut
f. 4( x-2 )2+ 4 ( y-2 )2 = 1
jawab:
Tentukan lebar focal chord, nilai eksentrisitas dan panjang sumbu mayor dari setiap persamaan elips di bawah ini.
d. x2 + 16y2-160y + 384 = 0
jawab:
Tuliskan persamaan elips dalam bentuk x² + y² = 1 yang memenuhi persyaratan berikut :
b. Fokus di (0,-4) dan (0,4) , puncak di (0,-5) dan (0,5)
jawab:
Tentukan panjang sumbu mayor dan sumbu minor, titik fokus, dan eksentrisitas dari setiap persamaan elips berikut, kemudian lukislah grafiknya.
A. 4x²+9y²=36
A. 4x²+9y²=36
jawab:
Tuliskan pusat, puncak, dan persamaan diretris dari setiap persamaan elips berikut .
c. (x-1)^2 / 1^2 + (y-2)^2 / 2^2 = 1
jawab:
Terimakasih
sudah berkunjung di postingan saya kali ini. Semoga soal dan pembahasan
materi ellips kelas XI semester 1 ini memberi manfaat bagi readers
sekalian. Silahkan lihat postigan saya di PART 1 .. Please take out
with full credits, no plagiator.. Annyeong chingu~~
Penulis,
Anisa Susianti
0 comments